Silyl(silylene)-Iron Complexes

Direct Evidence for Extremely Facile 1,2- and 1,3-Group Migrations in an FeSi, System**

Hiromi Tobita,* Akihisa Matsuda, Hisako Hashimoto, Keiji Ueno, and Hiroshi Ogino

The formation and high reactivity of transition-metal-element multiple bonds plays an important role in transition-metal-catalyzed reactions, in particular, by facilitating the cleavage and formation of usually robust bonds. Olefin metathesis is a typical and very useful example of this type of reaction, in which carbene complexes, which have a metal-carbon double bond, are not only key intermediates but may also act as high-performance catalysts.^[1] In contrast to metal-carbon multiple bonds, metal-element multiple bonds, where the element is from the third or subsequent row of the periodic table, have been much less widely investigated. Among them, silylene complexes, which possess a metal-silicon double bond, have been the most extensively studied,^[2-9] but the mechanisms of their reactions remain rather unclear.

Both ourselves and Pannell's group have insisted, through the generation of silyl(silylene) complexes with transition metals from groups 6 to 9 and the preparation of their donorstabilized forms, that 1,2- and 1,3-group migrations of these systems (Scheme 1) occur very easily under mild conditions, and cause the metal-catalyzed oligomerization/deoligomerization, isomerization, and redistribution of organosilicon

$$\begin{bmatrix} M \end{bmatrix} \xrightarrow{HR^1_2 SiSiR^2_2 R^3} \\ M = Cr, Mo, W, Mn, \\ Fe, Ru, Ir \\ R^2_2 \\ Si \\ Donor \xrightarrow{Donor} \begin{bmatrix} SiR^1_2 SiR^2_2 R^3 \\ M \\ H \\ M \end{bmatrix} \xrightarrow{I,2-silyl} \begin{bmatrix} I,2-silyl \\ migration \\ M \\ SiR^1_2 \end{bmatrix} \xrightarrow{I,3-R^2} \begin{bmatrix} I,3-R^2 \\ migration \\ M \\ SiR^1_2 R^2 \end{bmatrix}$$

Scheme 1. Illustrating the 1,2- and 1,3-group migrations in silyl(silylene) complexes with metals of groups 6 to 9.

[*] Prof. H. Tobita, A. Matsuda, Dr. H. Hashimoto Department of Chemistry, Graduate School of Science Tohoku University, Sendai 980-8578 (Japan)

Fax: (+81) 22-217-6543

E-mail: tobita@mail.tains.tohoku.ac.jp

Prof. K. Ueno

Department of Chemistry, Faculty of Engineering Gunma University, Kiryu 376-8515 (Japan)

Prof. H. Ogino

Miyagi Study Center, The University of the Air, Sendai 980-8577

[**] This work was supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan [Grants-in-Aid for Scientific Research Nos. 13440193, 14204065, and 14078202]

Zuschriften

compounds.^[2,3,10-12] In fact, this mechanism was notably successful in explaining the redistribution reactions of various organosilicon, -germanium, and -phosphorus systems. [13-15] We have previously given direct experimental evidence for 1,2silyl-migration from Si to the metal M ($\mathbf{A} \rightarrow \mathbf{B}$ or $\mathbf{D} \rightarrow \mathbf{B}'$) via isolating complexes of the type B' or C, which are formed in reactions of complexes of type **A** or \mathbf{D} . [2,3,16] Furthermore, we have observed fluxional behavior in the 1,3-migration of methyl groups on an externally donor-stabilized silyl(silylene)iron complex [Cp(CO)Fe(=SiMe₂←HMPA)SiMe₃] (HMPA = hexamethyl phosphoramide) by variable-temperature NMR spectroscopy.^[17] In this process, we assumed that the coordinated HMPA dissociates at elevated temperatures to generate a donor-free silyl(silylene) complex. We now give direct evidence for 1,3-alkyl migration ($\mathbf{B} \rightarrow \mathbf{B}'$ and vice versa) and 1,2-silyl migration from M to Si $(\mathbf{B} \rightarrow \mathbf{A} \text{ or } \mathbf{B}' \rightarrow \mathbf{D})$ by employing newly synthesized, donor-free silyl(silylene)iron complexes.

Photolysis of [Cp'Fe(CO)₂Me] (1a: Cp' = η^5 -C₅Me₅ (Cp*); 1b: Cp' = η^5 -C₅H₅ (Cp)) in the presence of HSiMe₂-SiMes₂Me (2; Mes = mesityl (2,4,6-trimethylphenyl)) produced the first donor-free silyl(silylene)iron complexes [Cp'Fe(CO)(=SiMes₂)SiMe₃] (3a: Cp' = Cp*, 60%; 3b: Cp' = Cp, 38% yield, calculated by NMR spectroscopy [Eq. (1)]). Complex 3a could be isolated as orange crystals in 40% yield, whereas isolation of 3b was unsuccessful

because of its extreme instability. We have previously synthesized the tungsten analogue of ${\bf 3a}$ by a similar method, but the chemistry has not been thoroughly investigated. [16]

The molecular structure of **3a** is shown in Figure 1.^[18] The two mesityl groups are on the silylene ligand, while all of the three methyl groups are on the silyl ligand. The iron-silylene bond (Fe-Si(1) 2.154(1) Å) is about 9% shorter than the iron-silyl bond (Fe-Si(2) 2.343(2) Å) and is the shortest reported bond of this type.^[19] The silylene silicon atom is tricoordinate and its geometry is almost planar (sum of the three bond angles around Si(1) = 359.3 (2)°). No intermolecular bonding interaction was found. The ²⁹Si NMR spectra of 3a and 3b show signals for the dimesitylsilylene ligand at extremely low field (365.8 ppm for **3a** and 372.0 ppm for **3b**), which is characteristic of the donor-free dialkyl- or diarylsilylene complexes.^[5,16] Also present are the resonances for the trimethylsilyl ligand (28.4 ppm for 3a and 31.0 ppm for 3b). These data unambiguously demonstrate the donor-free silyl(silylene)iron structures. In each of the ¹H NMR spectra of **3a** and **3b**, all the four o-Me groups, four m-H atoms, and two p-Me groups in two mesityl groups are inequivalent at room temperature. Apparently, the extremely congested

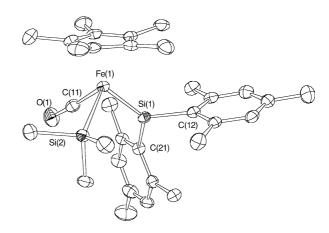


Figure 1. ORTEP drawing of 3a showing thermal ellipsoids at the 50% probability level. Selected bond lengths [Å] and angles [°]: Fe(1)-Si(1) 2.154(1), Fe(1)-Si(2) 2.343(1), Fe(1)-C(11) 1.724(4); Si(1)-Fe(1)-Si(2) 93.15, Fe(1)-Si(1)-C(12) 127.8(1), Fe(1)-Si(1)-C(21) 127.2(1), C(12)-Si(1)-C(21) 104.3(2).

structures of **3a** and **3b** lead to hindered rotation around both the Fe=Si and the Si-C(mesityl) bonds.

Sharma and Pannell previously reported that the photolysis of linear oligosilanyl–[Fe(CO)₂Cp] complexes containing more than three silicon atoms produces highly branched, tris(silyl)silyl iron complexes in high yields, for example, [{Me₃Si(Me₂Si)₃}Fe(CO)₂Cp] is converted to [(Me₃Si)₃Si–Fe(CO)₂Cp] on irradiation. It is reaction, the 1,2-silyl migration from the Fe center to the silylene silicon atom on the silyl(silylene) iron intermediates (corresponding to $\bf B \rightarrow \bf A$ or $\bf B' \rightarrow \bf D$; Scheme 1) could play an important role.

To confirm this hypothesis, thermolysis of **3a** in the presence of several two-electron-donor ligands was carried out. As a result, when **3a** was heated to 80 °C for 6 h in the presence of *t*BuNC, a disilanyl complex [Cp*Fe(CO)(CN-

tBu)SiMesMeSiMesMe,] (4) was isolated as a main product in 25% yield [Eq. (2)]. The ²⁹Si NMR signals of 4 appear in the normal range of disilanyl iron complexes (9.5 ppm for Fe–Si and -11.2 ppm for terminal Si atoms). The molecular structure of 4 is shown in Figure 2.^[18] A tBuNC molecule is terminally coordinated to the iron center, and each of the α-and β-Si atoms of the disilanyl ligand is coordinated to a mesityl group. The Fe–Si(1) and Si(1)–Si(2) bond lengths are 2.4107(7) and 2.4004(9) Å, respectively, which are normal values for single bonds.

A mechanism that can rationalize the reactions in Equations (1) and (2) is illustrated in Scheme 2. From 1a, successive CO dissociation, oxidative addition of 1, methane reductive elimination, 1,2-silyl migration, and 1,3-methyl migration occur to afford 3a. Three isomeric donor-free silyl(silylene) complexes (3a, 3a', and 3a'') are in rapid

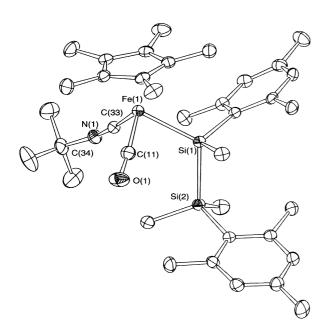
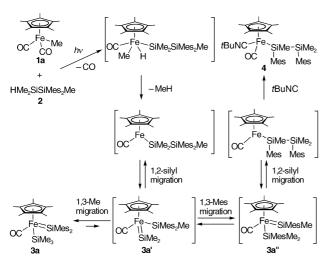



Figure 2. ORTEP drawing of 4 showing thermal ellipsoids at the 50% probability level. Selected bond lengths [Å] and angles [°]: Fe(1)-Si(1) 2.4107(7), Fe(1)-C(11) 1.732(2), Fe(1)-C(33) 1.808(2), Si(1)-Si(2) 2.4004(9), N(1)-C(33) 1.174(3); Fe(1)-Si(1)-Si(2) 118.74(3), Si(1)-Fe(1)-C(11) 84.23(9), Si(1)-Fe(1)-C(33) 94.92(7), C(11)-Fe(1)-C(33) 92.5(1), Fe(1)-C(33)-N(1) 173.4(2), C(33)-N(1)-C(34) 162.0(3).

Scheme 2. A mechanism for the formation of $[Cp*Fe(CO)(=SiMe_2)-SiMe_3]$ (3 a) and $[Cp*Fe(CO)(CNtBu)SiMesMeSiMesMe_2]$ (4).

equilibrium at room temperature, where **3a** is the major and only observable isomer. When this equilibrium mixture is heated in the presence of *t*BuNC, 1,2-migration of the silyl ligand onto the silylene ligand followed by coordination of *t*BuNC to the unsaturated iron center occurs to produce **4**. It should be noted that both **3a** and **4** take the structures that obviously minimize the steric repulsion between the bulky groups, namely, the two mesityl groups and a pentamethylcy-clopentadienyl group. In other words, **3a** and **4** are the thermodynamically controlled products. Both the formation

of **3a** and its conversion to **4** involves 1,2-silyl migration and 1,3-alkyl and/or aryl migration processes. These are considered to be concerted processes with low energy barriers.^[20] Importantly, through the latter process, usually robust Si—C bonds readily cleave under extremely mild conditions: The typical bond dissociation energy of the Si—C single bond is 301 kJ mol⁻¹, which is comparable to that of the C—C single bond (346 kJ mol⁻¹).^[21]

In this paper, we have provided the most straightforward evidence for extremely facile 1,2- and 1,3-group migrations in silyl(silylene) complex systems. These observations clearly show how organosilicon species bound to a transition-metal center can change their structures in an amazingly dynamic fashion through extremely facile Si—C and Si—Si bond fission and formation processes. A more detailed elucidation of the dynamic behavior is underway.

Experimental Section

3a: A pentane solution (3 mL) of [Cp*Fe(CO)₂Me] (1a; 1.02 g, 3.89 mmol) and HSiMe₂SiMes₂Me (2; 1.01 g, 2.96 mmol) in a pyrex sample tube with a teflon vacuum valve was irradiated for 80 min with a 450 W medium-pressure Hg lamp immersed in a water bath (4°C). The reaction mixture was degassed every 20 min by a conventional freeze-pump-thaw cycle on a vacuum line. The reaction mixture was filtered through a glass filter and volatiles were removed from the filtrate under reduced pressure. The residue was recrystallized from pentane at -30°C to afford orange crystals of [Cp*Fe(CO)-(=SiMes₂)SiMe₃] (**3a**) in 40% yield (0.660 g, 1.18 mmol). ¹H NMR (300 MHz, $[D_6]$ benzene): $\delta = 0.59$ (s, 9H, SiMe₃), 1.56 (s, 15H, C_5Me_5), 2.05 (s, 3H, o-Me), 2.10 (s, 3H, o-Me), 2.12 (s, 3H, o-Me), 2.15 (s, 3H, o-Me), 2.74 (s, 3H, p-Me), 3.05 (s, 3H, p-Me), 6.51 (s, 1H, m-H), 6.56 (s, 1H, m-H), 6.79 (s, 1H, m-H), 6.86 ppm (s, 1H, m-H); ¹³C{¹H} NMR (75.5 MHz, [D₆]benzene): $\delta = 9.5$ (SiMe₃), 10.1 (C_5Me_5) , 21.1 (p-Me), 23.7 (o-Me), 24.0 (o-Me), 24.7 (o-Me), 24.9 (o-Me), 93.7 (C_5 Me₅), 128.7 (C_6 H₂Me₃), 129.2 (C_6 H₂Me₃), 138.7 $(C_6H_2Me_3)$, 138.9 $(C_6H_2Me_3)$, 139.2 $(C_6H_2Me_3)$, 139.3 $(C_6H_2Me_3)$, 142.5 $(C_6H_2Me_3)$, 142.8 $(C_6H_2Me_3)$, 145.3 $(C_6H_2Me_3)$, 145.6 $(C_6H_2Me_3)$, 220.2 ppm (CO); ²⁹Si{¹H} NMR (59.6 MHz, [D₆]benzene): $\delta = 28.4$ (SiMe₃), 365.8 ppm (SiMes₂); IR ([D₆]benzene solution): $\tilde{\nu} = 1905 \text{ cm}^{-1} \text{ (s, } \nu_{\text{CO}}\text{); MS (EI, } 70 \text{ eV) } 558 \text{ } (M^+, 8), 543$ (M+-CH₃, 30), 515 (M+-CH₃-CO, 12), 73 (SiMe₃, 100); elemental analysis calcd (%) for C₃₂H₄₆FeOSi₂: C 68.79, H 8.30; found: C 69.07,

4: A toluene solution (5 mL) of 3a (0.103 g, 0.184 mmol) and tBuNC (0.0730 g, 0.878 mmol) in a pyrex tube with a teflon vacuum valve was heated to 80°C for 6 h. After removal of volatiles, the yellow residue was recrystallized from toluene/hexane to afford yellow crystals of [Cp*Fe(CO)(CNtBu)SiMesMeSiMesMe₂] (4) in 25% yield (0.030 g, 0.047 mmol). ¹H NMR (300 MHz, [D₆]benzene): $\delta = 0.69$ (s, 3H, SiMes Me_2), 0.97 (s, 3H, SiMes Me_2), 1.09 (s, 3H, SiMesMe), 1.46 (s, 15H, C₅Me₅), 2.15 (s, 3H, p-Me), 2.23 (s, 3H, p-Me), 2.45 (s, 6H, o-Me), 2.52 (s, 3H, o-Me), 2.64 (s, 3H, o-Me), 6.78 (s, 2H, m-H), 6.84 (s, 1H, m-H), 6.88 ppm (s, 1H, m-H); ${}^{13}C\{{}^{1}H\}$ NMR (75.5 MHz, $[D_6]$ benzene): $\delta = 6.4$ (SiMe), 6.7 (SiMe), 9.9 (C_5Me_5), 11.7 (SiMe), 21.1 (C₆H₂Me₃), 25.8 (C₆H₂Me₃), 26.8 (C₆H₂Me₃), 28.0 $(C_6H_2Me_3)$, 31.2 (CMe_3) , 56.3 (CMe_3) , 92.7 (C_5Me_5) , 128.9 $(C_6H_2Me_3)$, 129.1 $(C_6H_2Me_3)$, 129.3 $(C_6H_2Me_3)$, 130.1 $(C_6H_2Me_3)$, 136.3 $(C_6H_2Me_3)$, 136.9 $(C_6H_2Me_3)$, 137.2 $(C_6H_2Me_3)$, 140.3 $(C_6H_2Me_3)$, 144.5 ($C_6H_2Me_3$), 145.3 ($C_6H_2Me_3$), 176.6 (FeCN), 222.3 ppm (CO); ²⁹Si{¹H} NMR (59.6 MHz, [D₆]benzene): $\delta = -11.2$ (SiMesMe₂), 9.5 ppm (SiMesMe); IR ([D₆]benzene solution): $\tilde{v} = 1907 \text{ cm}^{-1}$ (s) (ν_{CO}) ; MS (EI, 70 eV) 641 (M^+ , 0.3), 626 (M^+ –Me, 0.6), 556 $(M^+-CO-tBu,$ 4), 515 $(M^+-CO-CNtBu-Me,$

Zuschriften

 $(M^+-CO-2Me-Mes, 100)$; elemental analysis calcd (%) for $C_{37}H_{55}FeONSi_2$: C 69.24, H 8.64, N 2.18; found: C 69.31, H 8.66, N 2.28.

Received: July 30, 2003 [Z52519]

Keywords: group migration \cdot iron \cdot ligands \cdot rearrangement \cdot transition metals

- [1] T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18.
- [2] H. Ogino, Chem. Rec. 2002, 2, 291.
- [3] M. Okazaki, H. Tobita, H. Ogino, Dalton Trans. 2003, 493.
- [4] S. R. Klei, T. D. Tilley, R. G. Bergman, Organometallics 2002, 21, 3376, 4648.
- [5] J. D. Feldman, J. C. Peters, T. D. Tilley, *Organometallics* **2002**, *21*,
- [6] H. Sakaba, M. Tsukamoto, T. Hirata, C. Kabuto, H. Horino, J. Am. Chem. Soc. 2000, 122, 11511.
- [7] T. A. Schmedake, M. Haaf, B. J. Paradise, D. Powell, R. West, Organometallics 2000, 19, 3263.
- [8] S. H. A. Petri, D. Eikenberg, B. Neumann, H.-G. Stammler, P. Jutzi, Organometallics 1999, 18, 2615.
- [9] B. Gehrhus, P. B. Hitchcock, M. F. Lappert, H. Maciejewski, Organometallics 1998, 17, 5599.
- [10] K. H. Pannell, J. Cervantes, C. Hernandez, J. Cassias, S. P. Vincenti, *Organometallics* **1986**, *5*, 1056.
- [11] H. Tobita, K. Ueno, H. Ogino, Chem. Lett. 1986, 1777.
- [12] H. K. Sharma, K. H. Pannell, Chem. Rev. 1995, 95, 1351.
- [13] K. Tamao, G.-R. Sun, A. Kawachi, J. Am. Chem. Soc. 1995, 117, 8043
- [14] S. M. Katz, J. A. Reichl, D. H. Berry, J. Am. Chem. Soc. 1998, 120, 9844.
- [15] P. Braunstein, M. Knorr, C. Stern, Coord. Chem. Rev. 1998, 178– 180, 903
- [16] K. Ueno, S. Asami, N. Watanabe, H. Ogino, *Organometallics* 2002, 21, 1326.
- [17] K. Ueno, K. Nakano, H. Ogino, Chem. Lett. 1996, 459.
- [18] **3a**: monoclinic; $P2_1/c$; a=10.4593(2), b=18.3566(6), c=16.0338(4) Å, $\beta=96.5724(7)^{\circ}$; V=3058.2(1) Å³; Z=4; $C_{32}H_{46}$ FeOSi₂; T=150 K, 26965 reflections, 6692 independent $(R_{\rm int}=0.043)$; R1=0.046 $(I>3\sigma(I))$, Rw=0.106; $\mu=5.93$ cm⁻¹; Full-matrix least-squares on F^2 . **4**: monoclinic; $P2_1$; a=8.8296(2), b=20.6795(5), c=9.9852(2) Å, $\beta=99.970(1)^{\circ}$; V=1795.68(7) Å³; Z=2; $C_{37}H_{55}$ FeNOSi₂; T=150 K, 17660 reflections, 4233 independent $(R_{\rm int}=0.036)$; R1=0.027 $(I>2\sigma(I))$, Rw=0.063; $\mu=5.14$ cm⁻¹; Full-matrix least-squares on F^2 . CCDC-215618 (**3a**) and CCDC-215619 (**4**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- [19] Based on a search of the Cambridge Structural Database, CSD version 5.24 (November 2002).
- [20] K. Morokuma, private communication; Z. Liu, PhD Thesis, Emory University, 2000, chap. 3. MO calculation (B3LYPLANL2DZ) for the 1,3-migration of a Me group from a silyl ligand to a silylene ligand in [CpFe(CO)(=SiMe₂)SiMe₃] showed that this is a concerted process with no intermediate and the activation energy of this process is 12.0 kcal mol⁻¹.
- [21] J. Emsley, *The Elements*, 3rd ed., Oxford University Press, Oxford, **1998**.